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We present a comparison between two different approaches for calculating anharmonic
frequencies, namely mean-field grid-based methods (VSCF, CC-VSCF, VCI) and those
obtained by second-order perturbation theory from the third and fourth energy derivatives. For
a meaningful comparison between the two approaches we report the results for the anharmonic
frequencies with the two approaches for the F�(H2O), Cl�(H2O), HNO3 and HNO3(H2O)
molecular systems at the same level of electronic structure theory and basis set. The two
methods were found to produce results of similar accuracy for the origin of the fundamental
band and selected overtone and combination bands. The optimal equilibrium and vibrationally
averaged geometries, spectroscopic constants and anharmonic frequencies of the (HF)n, n¼ 2–4
clusters are reported at the MP2/aug-cc-pVDZ level of theory based on calculations of higher
energy derivatives and compared to previous results obtained from CC-VSCF calculations at
the MP2/TZP level of theory.
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1. Introduction

It has long been established that the infrared (IR) spectra of hydrogen bonded clusters

represent a fingerprint of the underlying hydrogen bonding network [1–3]. This is a

direct consequence of the elongation of the hydrogen bonded stretch and the resulting

red shift in the corresponding vibrational frequency in accordance with Badger’s rule [4]

but also of the fact that different cluster isomers (and in turn different hydrogen

bonding networks) have dissimilar spectral signatures [2, 5]. This so-called ‘structural–

spectral’ correspondence (i.e. the correlation between structures and spectra) has been

previously successfully used for the assignment of cluster structures from the

experimentally measured spectra [6]. The pioneering work of Roger E. Miller and

coworkers [7] among others, has clearly played a major role in obtaining the

experimental information needed for the assignment of cluster structures for many

archetypal hydrogen bonded systems.
To a first approximation, which is associated with the least computational cost, the

experimentally measured band origins (�) are typically compared to the calculated

harmonic (!) vibrational frequencies obtained from first principles electronic structure

calculations. This provides for a qualitative comparison between theory and experiment

as the typical anharmonicities of the intramolecular stretching frequencies are in the

range of �100–200 cm�1. Oftentimes, the fact that the anharmonicities of the ‘free’ and

‘hydrogen bonded’ C–H, N–H, O–H or F–H stretches can be comparable in magnitude

has been used as a guide in order to assign the spectra. This is achieved by comparing

the calculated (harmonic, �!) with the measured (anharmonic, ��) relative shifts

between the ‘hydrogen bonded’ and ‘free’ (non-hydrogen bonded) vibrations and

making use of the approximate relation�!���. This approach is schematically shown

in figure 1 for typical red shifts of the OH stretching vibrations in aqueous clusters and

provides a crude (but oftentimes useful) approximation in the comparison between

experiment and theory. Several scaling factors, depending on the level of electronic

structure theory used, have been proposed [8] in order to be able to compare the (scaled)

calculated harmonic frequencies to the measured anharmonic band origins in the region

Frequency, cm−1

Dw (calc.)

Dv (exp.)

Hydrogen bonded “Free”

Figure 1. Harmonic (�!) and experimental (��) frequency shifts due to hydrogen bonding.
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of the IR spectra that probes the hydrogen bonding network (typically 3000–

4000 cm�1).
A more computationally demanding approach for the comparison between theory

and experiment requires the calculation of the anharmonic frequencies. Given the

complexity of the problem arising from the calculation of the full anharmonicities on

a multidimensional potential energy surface (PES), a fact that can result in a

computationally intractable problem as the size of the system increases, several

approaches have been proposed for the efficient calculation of the anharmonic

frequencies.
In recent years the Bowman and Gerber groups have developed computer codes

that can calculate the ahnarmonic vibrational frequencies of polyatomic systems

and clusters. Both approaches are based on the use of the Watson Hamiltonian [9]

and the subtle differences in the two implementations are outlined in a recent review

[10]. Following Gerber and coworkers [11] and Bowman and coworkers [12], the

solution of the vibrational Schrödinger equation in mass-weighted normal mode

coordinates Qk:

�
1

2

XN
k

@2

@Q2
k

þ VðQ1, . . . ,QNÞ

" #
 nðQ1, . . . ,QNÞ ¼ En nðQ1, . . . ,QNÞ ð1Þ

via a self-consistent procedure [13, 14] (VSCF) is the starting point in obtaining

anharmonic frequencies at the equilibrium geometry. It should be noted that the above

Hamiltonian, which is used by the Gerber group, does not include vibrational angular

momentum terms and it is also limited to zero total angular momentum. These effects,

which are usually either small or constant at the second order perturbation theory,

are included in the implementation by the Bowman group. In the above expression

V¼V(Q1, . . . ,QN) is the potential and N is the number of vibrational degrees of

freedom. The VSCF approximation is based on the approximation that the modes

are separable, viz.

 nðQ1, . . . ,QNÞ ¼
YN
k¼1

 ðnÞ
k ðQkÞ, ð2Þ

which reduces the problem to solving the equations for each mode Qk:

�
1

2

@2

@Q2
k

þ Veff
k ðQkÞ

� �
 ðnÞ
k ðQkÞ ¼ "n 

ðnÞ
k ðQkÞ ð3Þ

with the effective potential

Veff
k ðQkÞ ¼

YN
‘6¼k

 ðnÞ
‘ ðQ‘Þ VðQ1, . . . ,QNÞ

�� ��YN
‘6¼k

 ðnÞ
‘ ðQ‘Þ

+
,

*
ð4Þ

which effectively couples in an average manner each mode Qk with all the others. The

self-consistent solution of equation (3) for each mode yields the mode energies, "ðnÞk , and
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wavefunctions,  ðnÞ
k , from which the VSCF energy

EVSCF
n ¼

XN
k¼1

"ðnÞk � ðN� 1Þ
YN
k¼1

 ðnÞ
k ðQkÞ VðQ1, . . . ,QNÞ

�� ��YN
k¼1

 ðnÞ
k ðQkÞ

* +
ð5Þ

is obtained.
In parallel to the correlation problem in electronic structure theory, VSCF can be

thought of as only the starting point in describing the mode correlations. To this end,
higher inter-mode correlations that are based on second order perturbation theory [15]
(VMP2) as well as on configuration interaction [16] (CI) expansions have
been proposed. Those are based on either mixing a group of VSCF states, leading to
a generalized eigenvalue problem (VSCFþCI) or on using the orthonormal basis
of eigenfunctions of a single VSCF Hamiltonian, usually the one for the ground
state (VCI).

Bowman and coworkers [17] have relied on a representation of the potential energy
surface in terms of a hierarchical expansion of the normal coordinates QN according to

VðQ1,Q2, . . . ,QNÞ ¼
XN
i¼1

V
ð1Þ
i ðQiÞþ

XN
i,j¼1

V
ð2Þ
ij ðQi,QjÞ þ

XN
i,j,k¼1

V
ð3Þ
ijk ðQi,Qj,QkÞ

þ
XN

i,j,k,‘¼1

V
ð4Þ
ijk‘ðQi,Qj,Qk,Q‘Þ þ � � � ð6Þ

The potential is therefore expressed in terms of one-, two-, three-, . . . ,m-mode
representations V

ðmÞ

12...mðQ1,Q2, . . . ,QmÞ, which are cuts along the normal mode
coordinates Q1,Q2, . . . ,Qm with all remaining normal mode coordinates set to zero.
In this scheme, the three-mode representation is exact for three-atom systems, the
six-mode coupling is exact for four-atom systems, and so on.

The computational cost is associated with the evaluation of a grid of points on the
multidimensional PES, using either ab initio electronic structure methods or classical
potentials [18]. Typical grids of eight (for the diagonal) and 8� 8 (for the two-mode
correlations) are employed and the number of points, Npoints, needed when casting
equation (6) in just the diagonal and pair-coupling potentials on a grid is equal to [11]:

Npoints ¼ Nmode �Ngrid þ
1

2
Nmode � ðNmode � 1Þ �N2

grid: ð7Þ

An approach that is different than the one introduced by the Bowman and Gerber
groups is the one that is based on second-order perturbation theory [19, 20] which
provides closed expressions for most of the spectroscopic constants needed for
obtaining anharmonic frequencies. Starting from the analytical second derivatives of
the electronic energy with respect to the nuclear displacements at a particular level of
ab initio theory, the third and semidiagonal fourth derivatives can be obtained by a
finite difference approach. This procedure, which requires the evaluation of (2nþ 1)
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second derivatives for a system with n normal modes can be very competitive when
compared to the mean-field grid-based methods, especially with the recent advances in
the efficient calculation of analytic energy derivatives and their efficient implementation
on parallel computer architectures.

Following the formulation by Barone and coworkers [21, 22], the third energy
derivatives with respect to normal coordinates, �ijk, can be evaluated by numerical
differentiation of the analytical second derivatives, �ij, at small displacements �q
according to:

�ijk ¼
1

3

�jkð�qiÞ ��jkð��qiÞ

2�qi
þ
�kið�qjÞ ��kið��qjiÞ

2�qj
þ
�ijð�qkÞ ��ijð��qkÞ

2�qk

� �
: ð8Þ

The numerical calculation of the full fourth derivatives requires simultaneous
displacements along two normal coordinates. For the evaluation of the ro-vibrational
energies by second order perturbation theory the required even derivatives are obtained
by performing displacements along a single normal coordinate to evaluate terms with
at most three distinct indices [19, 22]

�ijkk ¼
�ijð�qkÞ þ�ijð��qkÞ � 2�ijð0Þ

�q2k
ð9Þ

and

�iikk ¼
1

2

�iið�qkÞ þ�iið��qkÞ � 2�iið0Þ

�q2k
þ
�kkð�qiÞ þ�kkð��qiÞ � 2�kkð0Þ

�q2i

� �
: ð10Þ

The vibrational Hamiltonian consists of the zero-order harmonic term (including a
kinetic contribution from the vibrational angular momentum) and additional terms
containing the contribution of cubic, quartic and higher components of the potential.
A complete description of the rovibrational Hamiltonian and the subsequent
evaluation of the spectroscopic constants and anharmonic frequencies is available
in [22]. Barone and coworkers have implemented this procedure in the ‘Prova’ program,
which interfaces with major electronic structure codes for the calculation of the
anharmonic frequencies and rovibrational energies.

In this study we use this second approach (numerical evaluation of third derivatives
and semidiagonal fourth derivatives) for the calculation of anharmonic vibrations for
(HF)n clusters, n¼ 2–4. In section 2 we outline the details of the electronic structure
calculations. In section 3 we first perform a comparison between the two approaches,
viz. the use of a grid and the numerical evaluation of higher derivatives for various
model systems and subsequently present the results for the (HF)n clusters, n¼ 2–4, and
compare them with the experimentally available data. Final conclusions are presented
in section 4.

2. Details of the electronic structure calculations

We used the numerical evaluation of higher derivatives as implemented in the Gaussian
03 [23] electronic software program. Since analytical evaluation of second derivatives is

Anharmonic vibrational spectra of hydrogen bonded clusters 723
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a prerequisite, we performed all calculations at the MP2 level of theory. The
aug-cc-pVDZ basis set of Dunning and coworkers [24] was used to optimize the
geometries of the monomer through tetramer clusters at the MP2 level of theory and
obtain the harmonic vibrational frequencies analytically. For all geometry optimiza-
tions the ‘verytight’ criterion was used to ensure that the RMS force convergence
criterion is �1� 10�6. Anharmonic frequencies and anharmonic vibrational–rotational
couplings were computed by a perturbative evaluation including cubic force constants
to second order and semidiagonal quartic constants to first order at the MP2 level of
theory with the aug-cc-pVDZ basis set for the monomer through tetramer clusters.
All electronic structure calculations were performed at the National Energy Research
Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

The comparison between mean-field grid-based methods (VSCF, CC-VSCF, VCI,
etc.) and the approach based on higher energy derivatives, was performed for systems
for which published data exist with the first approach. For a meaningful comparison
we used the same level of theory and basis set that was employed in the mean-field grid-
based methods from the Gerber and Bowman groups. We performed MP2 anharmonic
calculations the F�(H2O) [25], Cl�(H2O) [26] and HNO3, HNO3(H2O) [27] clusters.
For the first two we used the aug-cc-pVTZ basis set whereas for the last two the TZP
basis set [28] was employed.

3. Results and discussion

3.1. Comparison between higher energy derivative and mean-field grid-based methods
for model systems

The MP2/aug-cc-pVTZ anharmonic frequencies for the F�(H2O) cluster obtained via
the perturbative approach are compared with the corresponding ones previously
reported [25] with the correlation-corrected VSCF (CC-VSCF) method in table 1 using
a grid of points on the PES obtained at the same level of electronic structure theory with
the same basis set. The experimental results [29] obtained from the Johnson group are
also listed for comparison. In general there is very good agreement between the results
of the two methods with typical differences ranging from 3 to 40 cm�1 with the
exception of the very anharmonic v5 mode [30] for which the zero-order picture of a
fluoride ion interacting with a water molecule breaks down due to the significant
amplitude of the wave function corresponding to the FH..OH� complex [29(b), 30].

The comparison between the perturbative approach and vibrational CI (VCI) is
shown in table 2 for the Cl�(H2O) cluster at the MP2/aug-cc-pVTZ level of theory.
The VCI results [26] are obtained using the five mode-coupling approximation
(equation (6)). It should be noted that VCI anharmonic results using a PES at a higher
correlation level of theory [CCSD(T)] are available and those VCI//CCSD(T)/aug-cc-
pVTZ results are in much better agreement with experiment than those at the MP2
level. However, as mentioned earlier, due to the current availability of analytical second
energy derivatives at the MP2 level only, we have chosen to compare our results with
the ones obtained at the VCI//MP2/aug-cc-pVTZ level for a meaningful comparison
between the two approaches which is based on the same level of electronic structure
theory for the PES. Again the typical differences between the two methods are very
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small and they both yield results which are in good agreement with the experimentally

observed band origins [29(b), 31]. For this system the intramolecular HOH bend and

OH stretches, which are usually probed during IR experiments, are also in close

agreement between the two methods. This is also the case for the computed

combination band (�1þ �5) and overtones (2�3, 2�4), the latter being in excellent

agreement with the experimental observation.
The final comparison between the results of the two methods is for the HNO3 and

HNO3(H2O) systems. Due to the availability of anharmonic CC-VSCF results at the

MP2/TZP level of theory we performed our anharmonic calculations with this basis set.
Our results for HNO3 are shown in table 3 together with the previous ones [27] at the

CC-VSCF level as well as the experimentally measured fundamental [32] and overtone

[33] frequencies. Again the calculated anharmonic frequencies with both methods are

very close to experiment except for the NO2 asymmetric stretch frequency (�2) for which
deviations of over 100 cm�1 are observed for both methods with respect to experiment.

CC-VSCF also seems to predict a very accurate OH stretch overtone when compared

to experiment whereas our result overestimates it by about 80 cm�1. It should again be

Table 2. Comparison of anharmonic frequencies with the VCI (five-mode coupling) and perturbative
(including third derivative) approaches for Cl�(H2O) at the MP2/aug-cc-pVTZ level of theory. Experimental

results are also indicated.

Mode Harmonic VCI (5 mode-coupling)a This work Exp.b

�1 202.9 202.3 198.2 210c

�2 365.7 369.5 342.7
�3 752.7 724.7 746.4 745
�4 1669.5 1630.3 1633.6 1650
�5 3338.0 3040.6 3062.7 3130� 10
�6 3893.5 3713.8 3711.7 3699
2�3 1505.4 1420.2 1446.6
2�4 3338.9 3237.8 3256.6 3283
�1þ �5 3540.9 3269.2 3286.0

aReference [26].
bReferences [29(b), 31].
cObserved as a combination band with the ionic hydrogen bond.

Table 1. Comparison of anharmonic frequencies with the CC-VSCF and perturbative
(including third derivative) approaches for F�(H2O) at the MP2/aug-cc-pVTZ level

of theory. Experimental results are also indicated.

Mode Harmonic CC-VSCFa This work Exp.b

�1 392.2 443 420.6
�2 581.0 575 572.4
�3 1176.8 1170 1208.6 1083–1250
�4 1698.5 1618 1609.5 1650
�5 2089.7 1450 917.3
�6 3891.6 3691 3720.7 3687
2�5 4179.4 2844 2905� 20

aReference [25].
bReferences [29(a), 29(b)].
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noted that recently the fundamentals of HNO3 were reported [34] to second order
perturbation theory using a PES obtained at the CCSD(T)/ANO level of theory.
However, for the same reasons that were previously outlined for the Cl�H2O complex
having to do with the current availability of analytic second energy derivatives at the
MP2 level only, we have chosen to compare our MP2/TZP results with the ones
obtained at the CC-VSCF//MP2/TZP level for a meaningful comparison between the
two approaches which is based on the same level of electronic structure theory for the
underlying PES. The corresponding theoretical [27] and experimental [35, 36] results
for HNO3(H2O), listed in table 4, also show a close resemblance between the computed
frequencies with the two methods except for the OH symmetric stretch of H2O (�1)
and the OH stretch of HNO3 (�3) for which the differences are >100 cm�1 with the
CC-VSCF result for �3 being closer to experiment, albeit still too large by 120 cm�1.
Both methods also seem to overestimate the NO2 asymmetric stretch (�4) by >100 cm�1

with respect to experiment. Results of mixed accuracy are also obtained for the
combination and overtone bands for which experimental measurements are available.
The position of the combination band �4þ �7 is very accurately described by both
methods but the one for �4þ �6 and the overtone of the NO2 symmetric stretch (2�7) is
>200 cm�1 away from experiment.

3.2. Minimum energy and vibrationally averaged geometries of (HF)n,
n^ 2–4 clusters

The minimum energy structures for the hydrogen fluoride monomer through tetramer
clusters are shown in figure 2. They correspond to the homodromic structures [37]
where every molecule is simultaneously a proton donor and a proton acceptor. The
total energies (Ee in a.u.) at the optimized structures are listed in table 5.
The equilibrium and vibrationally averaged structural parameters of the global cluster
minima are listed in table 6. In this table, RFF denotes the intermolecular F–F
separation whereas r indicates the intramolecular H–F bond. Due to the symmetry of

Table 3. Comparison of anharmonic frequencies and selected overtones and
combination bands with the CC-VSCF and perturbative (including third

derivative) approaches for HNO3 at the MP2/TZP level of theory. Experimental
results are also indicated.

Mode Harmonic CC-VSCFa This work Exp.b

�9 468 437 458
�7 591 573 579 580
�6 660 642 641 647
�8 762 750 751 763
�5 894 873 867 879
�4 1314 1296 1296 1304
�3 1351 1261 1323 1326
�2 1864 1840 1841 1710
�1 3784 3547 3597 3550
2�1 7568 6940 7025 6944c

aReference [27].
bReference [32].
cReference [33].
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Table 4. Comparison of anharmonic frequencies and selected overtones and
combination bands with the CC-VSCF and perturbative (including third derivative)
approaches for HNO3(H2O) at the MP2/TZP level of theory. Experimental results

are also indicated.

Mode Harmonic CC-VSCFa This work Exp.b

�18 67 63
�17 103 79
�16 179 104
�15 226 205
�14 303 163
�13 408 353
�12 648 642 633
�11 698 688 685
�10 771 763 759 770
�9 842 863 771
�8 948 927 924 931
�7 1330 1310 1305 1308
�6 1519 1466 1443 1412
�5 1617 1569 1585
�4 1837 1809 1811 1694
�3 3405 3146 3270 3025
�2 3866 3682 3695
�1 3999 3601 3813
�4þ �7 3167 3118 3116 3126
�4þ �6 3355 3276 3206 2980
2�7 2661 2604 2784

aReference [27].
bReference [35, 36].

r

R

#

Fb

Fb

Hb

Figure 2. [Colour online] Optimal geometries of the (HF)n, n¼ 1–4 clusters and definition of geometrical
parameters (see table 6).
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the clusters, the optimal geometries can be described with the previous two distances
and the angle �¼ (H�–F�–F�), where � and � denote adjacent molecules (cf. figure 2).
We note a systematic contraction of the intermolecular F–F separation by almost
0.22 Å from the dimer to the tetramer. This is larger than the corresponding elongation
in water clusters [37] (0.177 Å) and it is consistent with the fact that the cooperative

three-body term at the minimum energy configurations is stronger for (HF)3 (22%, [38])
than for (H2O)3 (17%, [37, 39]). Consequently, the elongation of the hydrogen bonded
H–F stretch, r, is �0.01 Å/molecule from the monomer to the tetramer, larger than that
found for the analogous water clusters [37, 40]. The effect of vibrational averaging on
the optimal geometries is also shown in table 6. This amounts to elongations of 0.060 Å,

0.053 Å and 0.022 Å for the intramolecular F–F separations of the dimer through
tetramer clusters, respectively. Our results for the equilibrium geometrical parameters
are in good agreement with those published earlier [41] at comparable levels of theory
and basis sets. To the best of our knowledge the vibrationally averaged geometries and
corresponding spectroscopic constants, discussed below, are the first ones reported for

those clusters.
The calculated rotational constants and the constants in the symmetrically reduced

Hamiltonian (DJ, DJK and DK) are listed in table 7 for the equilibrium (subscript ‘e’)
and vibrationally averaged (subscript ‘0’) geometries and compared with available

Table 5. Energies (in a.u.) at the optimal geometries of the (HF)n,
n¼ 1–4 clusters at the MP2/aug-cc-pVDZ level of theory.

Cluster Energy (a.u.)

HF �100.25580447
(HF)2 �200.51907518
(HF)3 �300.79204677
(HF)4 �401.06861284

Table 6. Equilibrium and vibrationally averaged geometries of the (HF)n,
n¼ 1–4 clusters at the MP2/aug-cc-pVDZ level of theory. RFF denotes the

intermolecular F–F separation, r the intramolecular H–F separation and � the
H�–F�–F� angle where � and � denote adjacent molecules.

Cluster Symmetry Coordinate Equilibrium Vibrationally averaged

HF C1v r (Å) 0.9248

(HF)2 C1 RFF (Å) 2.7532 2.8132
r1 (Å) 0.9311 0.9080
r2 (Å) 0.9277 0.9047
�1 (Å) 6.54 3.34
�2 (Å) 110.18 116.07

(HF)3 C3h RFF (Å) 2.6190 2.6719
r (Å) 0.9419 0.9277
� (Å) 21.49 23.02

(HF)4 C4h RFF (Å) 2.5362 2.5584
r (Å) 0.9535 0.9465
� (Å) 9.41 10.25
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experimental data [42–45]. When comparing the calculated with the experimentally
measured quantities (for instance for the rotational constants) the effects of higher
electron correlation and the truncation of basis set should be taken into account.
As noted earlier our calculations are currently restricted at the MP2 level of theory
due to the availability of analytic second derivatives at that level and they are performed
with the aug-cc-pVDZ basis set but even those provide satisfactory results for the
rotational constants when compared to experiment (cf. table 7).

3.3. Anharmonic frequencies

As noted earlier the Miller group has studied the vibrational predissociation lifetime of
the HF dimer [46], the photodissociation of cyclic HF complexes pentamer through
heptamer [47] and recently the growth of HF polymers inside He droplets [42, 48]
providing experimental probes of the HF stretching vibrations [49] and their change in
different media. In addition, many of the vibrations of various HF clusters have been
studied experimentally by Nesbitt and coworkers [50–52] via high-resolution infrared
spectroscopy. Other groups have also provided experimental data for the fundamental

Table 7. Effect of vibrational averaging (estimated at the MP2/aug-cc-pVDZ
level of theory) on the rotational constants of (HF)n, n¼ 2–4, and comparison
with experimental values for the ground state. Constants in the symmetrically
reduced Hamiltonian (DJ, DJK and DK) are also listed. Subscripts ‘e’ and ‘0’

denote equilibrium and vibrationally averaged quantities, respectively.

Cluster This work Experiment

(HF)2 Ae (cm
�1) 23.09511

A0 (cm
�1) 27.05708

Be (cm
�1) 0.22447

B0 (cm
�1) 0.21530 0.21671a

Ce (cm
�1) 0.22231

C0 (cm
�1) 0.21275

DJ (cm
�1) 1.650� 10�6

DJK (cm�1) �3.587� 10�5

DK (cm�1) 1.542� 10�1

(HF)3 Ae¼Be (cm
�1) 0.250596

A0¼B0 (cm
�1) 0.241355 0.23978b

Ce (cm
�1) 0.125298

C0 (cm
�1) 0.120234 0.11992b

DJ (cm
�1) 1.416� 10�6

DJK (cm�1) �2.192� 10�6

DK (cm�1) 9.363� 10�7

(HF)4 Ae¼Be (cm
�1) 0.133255

A0¼B0 (cm
�1) 0.131030 0.132081(7)c

Ce (cm
�1) 0.066628

C0 (cm
�1) 0.065448

DJ (cm
�1) 3.774� 10�7 7.1(2)� 10�7c

DJK (cm�1) �6.620� 10�7
�9(2)� 10�7c

DK (cm�1) 3.078� 10�7

aReferences [42, 43].
bReference [44].
cReference [45].
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bands of HF clusters by means of FTIR spectroscopic [53], size-selected IR absorption

[54], pulsed supersonic expansion pulsed IR experiments [45] as well as experiments

in an Ar matrix [55, 56]. Those experimental studies provide a useful database for the

benchmarking of theoretical methods used to compute the anharmonic frequencies of

these systems. Chaban and Gerber have previously reported [57] the anharmonic

vibrational frequencies for the n¼ 3 and 4 clusters at the CC-VSCF level based on a

PES computed at the MP2/TZP level of electronic structure theory.
The calculated harmonic (!) and anharmonic (�) frequencies (in cm�1) and IR

intensities (in km/mol) for the dimer through tetramer clusters are listed in table 8

together with the previous experimentally measured band origins and the results of the

Table 8. Harmonic and anharmonic vibrational frequencies, zero-point energies (in cm�1) and infrared (IR)
intensities (in km/mol) for the (HF)n, n¼ 2–4 clusters.

Anharmonic (cm�1)

Cluster Symmetry Harmonic (cm�1) IR intensity (km/mol) This work CC-VSCFa Exp. (cm�1)

(HF)2 A0 158 12.8 121 125b

A0 214 148.3 148 161b

A0 0 471 175.8 401 395 (8)b

A0 576 152.8 440 475 (3)b

A0 3940 462.8 3784 3868c

A0 4039 136.2 3853 3931c

ZPE, cm�1 4698.1 4571.0 4591

(HF)3 E0 197 24.1 163 162, 170
A0 219 0.0 182 187
E0 0 503 0.0 423 417, 445
E0 603 351.2 496 458, 485 446d

A0 0 704 390.5 609 643
A0 990 0.0 786 835
A0 3664 0.0 3494 3575
E0 3782 687.7 3602 3655, 3659 3702d

ZPE, cm�1 7874.0 7676.7

(HF)4 Bu 44 0.0 40 76
Bg 95 0.0 85 81
Ag 224 0.0 194 183
Eu 288 48.7 258 241 195e

Bg 303 0.0 275 254
Bu 653 0.0 588 631
Bg 677 0.0 623 635
Eg 696 0.0 626 693
Au 799 487.6 732 824 714.8f

Eu 891 331.3 781 773 752.7f

Ag 1149 0.0 975 1023
Ag 3333 0.0 3127 3338
Eu 3527 1795.4 3323 3426 3445g

Bg 3602 0.0 3408 3562
ZPE, cm�1 10841.2 10593.5

aReference [57].
bReferences [50, 52].
cReference [43].
dReference [55].
eReference [56].
fReference [45].
gReference [53].
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CC-VSCF//MP2/TZP of Chaban and Gerber [57] for the trimer and tetramer. We note

that our calculations overestimate the experimentally observed frequencies for the

HF stretches in the dimer by ca. 80 cm�1, whereas differences of �100 cm�1 are found

for the HF stretches of the larger trimer and tetramer clusters with respect to

experiment. These differences are larger with respect to recent CC-VSCF calculations

(albeit with the different TZP basis set), which yield differences with respect to

experiment of 63 cm�1 for the trimer and just 20 cm�1 for the tetramer [57]. Given the

results of the previous section on the comparison between the two methods for model

systems with the same basis sets, the observed difference might be due to the different

basis sets used, however further investigation of this proposition is needed.

4. Conclusions

The present study provides a comparison between the accuracy of mean-field grid-based

methods and those based on higher energy derivatives for the calculation of anharmonic

vibrational frequencies. Several model systems were used at the same level of theory

(level of electron correlation and basis set) in order to compare the results between the

two approaches. We found that, except in some special cases, which may require the use

of larger grids and more points in the numerical calculation of higher order derivatives,

the agreement between the two approaches is satisfactory. In this study we have

demonstrated this ability by presenting the results of clusters as large as (HF)4.

Forthcoming results will be presented for molecular clusters as large as (H2O)6.
The computational efficiency and the time-to-solution for the two approaches are

constantly being improved. For instance, the use of symmetry [58] in constructing

the grids for VSCF and VCI calculations greatly reduces the number of ab initio points

needed to represent the underlying PES whereas recent implementations [59] of the

CC-VSCF method have improved its scaling by a factor of N2. On the other hand

the approach via higher energy derivatives can become more competitive, especially for

larger (n>15 atom) molecular systems, following the efficient implementation of the

numerical computation of the higher order energy derivatives on parallel architectures.
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